TP 7 : Fonctions dans Scilab, résolution numérique de l'équation f(x)=0

Dans ce TP, nous apprendrons à programmer des fonctions dans Scilab. Après l'étude d'un exemple de travail, et une rapide découverte des commandes de base associées, nous programmerons un programme permettant de résoudre l'équation f(x)=0..

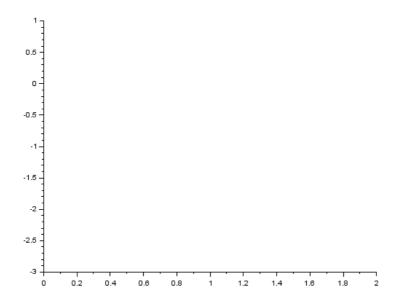
Partie A: Etude d'une fonction

On considère la fonction f définie sur \mathbb{R} par $f(x)=x^3-3x^2+1$.

1. Dresser le tableau de variations complet de la fonction f.

On admettra que
$$\lim_{x \to -\infty} f(x) = -\infty$$
 et $\lim_{x \to +\infty} f(x) = +\infty$

2. Justifier que l'équation f(x)=0 admet une unique solution α dans l'intervalle [0,2].


TP 7 : Fonctions dans Scilab, résolution numérique de l'équation f(x)=0

Partie B: Programmer une fonction dans Scilab

Entrez une feuille SciNotes et entrez-y:

pour entrer la fonction f dans Scilab.

- 1. Dans la console, vérifiez les résultats des commandes f(0) et f(1)
- 2. Toujours dans la console, entrez la commande fplot2d([0:0.1:2], f) reproduisez le résultat ci-dessous :

- 3. Essayez de donner une valeur approchée de α par lecture graphique.
- 4. Utilisez Scilab pour compléter le tableau de valeurs suivant :

X	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
f(x)										

Arrondir les valeurs au centième.

5. En déduire un encadrement de α .

Partie C : Un algorithme de résolution numérique.

1. Expliquez le sens de l'algorithme suivant :

Entrez l'algorithme dans Scilab, et vérifiez le résultat affiché :

2. Comment faut-il modifier cet algorithme pour obtenir un encadrement de α au centière près ?

Effectuez le changement, et notez l'encadrement obtenu :

3. Comment obtenir une valeur approchée de \alpha \alpha \text{ avec 8 chiffres corrects après la virgule ?

Effectuez la modification et exécutez le script. Que se passe-t-il?

- 3. a) Justifier brièvement que l'équation f(x)=0 admet deux autres solution β et γ dans \mathbb{R} .
 - b) Que faut-il modifier dans l'algorithme précédent pour obtenir des encadrements de $\,\beta$ et $\gamma\,\,?$
 - c) Donner des encadrements de ces solutions d'amplitude 10^{-4} .

TP 7 : Fonctions dans Scilab, résolution numérique de l'équation f(x)=0

Exercice

Soit g la fonction définie sur \mathbb{R} par $g(x)=(2-x)e^x-1$.

1. Dresser le tableau de variations complet de la fonction g.

2. En déduire le nombre de solutions de l'équation g(x)=0 .

3. Donner un encadrement à 10^{-2} près de chacune de ces solutions.