Sujet de colle A

Semaine 6

Question de cours :

À quelle condition est-ce qu'un graphe possède une chaîne *Eulérienne*? (Chaîne passant une fois exactement par chaque arête)

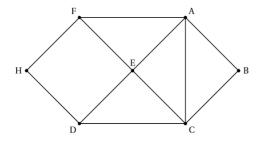
Exercice 1

Calculer les limites suivantes :

$$L_{1} = \lim_{x \to +\infty} \left(x^{4} - 2 x^{3} + 1 \right) \qquad L_{2} = \lim_{x \to -\infty} \left(\frac{e^{x} + 1}{x^{2} + 1} \right) \qquad L_{3} = \lim_{x \to 1} \left(\frac{\sqrt{x + 3} - 2}{x - 1} \right)$$

Exercice 2

On considère le graphe suivant :



- 1. Préciser si ce graphe est connexe en justifiant la réponse.
- 2. Expliquer, en justifiant, si ce graphe admet un chaîne passant une seule fois exactement par chaque arête. Si c'est possible, rn donner une.
- 3. Donner la matrice d'adjacence M associée au graphe. On rangera les sommets par ordre alphabétique.

4. On donne:
$$M^4 = \begin{pmatrix} 31 & 15 & 26 & 21 & 27 & 18 & 12 \\ 15 & 12 & 15 & 12 & 18 & 12 & 6 \\ 26 & 15 & 31 & 18 & 27 & 21 & 12 \\ 21 & 12 & 18 & 20 & 17 & 18 & 5 \\ 27 & 18 & 27 & 17 & 34 & 17 & 16 \\ 18 & 12 & 21 & 18 & 17 & 20 & 5 \\ 12 & 6 & 12 & 5 & 16 & 5 & ? \end{pmatrix}$$

Déterminer, en justifiant, le nombre de chemins de longueur 4 entre les sommets B et H. Donner ces chemins.

5. Déterminer la valeur remplacée par le point d'interrogation dans la matrice M^4

Exercice 3

On considère l'application ϕ définie sur \mathbb{R}^+ par $\phi(x) = \begin{cases} 1 - x^2 \ln(x) & \text{si } x > 0 \\ 1 & \text{si } x = 0 \end{cases}$

- 1. Déterminer la limite de $\phi(x)$ en $+\infty$
- 2. Montrer que la fonction ϕ est continue sur $\mathbb{R}^+ = [0; +\infty[$.
- 3. Justifier la dérivabilité de ϕ sur \mathbb{R}^{+*} et calculer $\phi'(x)$ pour x>0.
- 4. Dresser le tableau de variations de φ.
- 5. Montrer l'existence d'un unique réel α tel que $\phi(\alpha)=0$ et justifier que $\sqrt{2}<\alpha<2$. On vous informe, à toutes fins utiles, que $\ln(2)\approx 0.7$.

Sujet de colle B

Semaine 6

Question de cours :

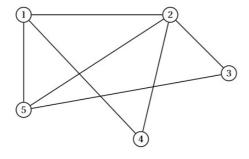
Énoncer le théorème des gendarmes pour les fonctions.

Exercice 1

Étudier la continuité de la fonction définie par $f(x) = \begin{cases} 1 + e^{\frac{1}{x}} & \text{si } x < 0 \\ 3x + 1 & \text{si } 0 \le x \le 1 \\ x^2 + 4x - 2 & \text{si } x > 1 \end{cases}$

Exercice 2

On considère le graphe Γ ci-dessous



- 1. a) Le graphe Γ est-il complet ? *Justifier*.
 - b) Le graphe Γ est-il connexe ? *Justifier*.
- 2. Ce graphe admet-il une chaîne passant exactement une seul fosi par chaque arête ? Si oui, en donner une.
- 3. Donner la matrice d'adjacence M associée au graphe Γ.
- 4. On donne

$$M^{2} = \begin{pmatrix} 3 & 2 & 2 & 1 & 1 \\ 2 & 4 & 1 & 1 & 2 \\ 2 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 & 3 \end{pmatrix} \qquad M^{3} = \begin{pmatrix} 4 & 7 & 3 & 5 & 7 \\ 7 & 6 & 6 & 6 & 7 \\ 3 & 6 & 2 & 3 & 5 \\ 5 & 6 & 3 & 2 & 3 \\ 7 & 7 & 5 & 3 & ? \end{pmatrix}$$

Combien existe-t-il de chaînes de longueur 3 entre les sommets n°1 et n°4? Les citer toutes.

5. Quelle valeur a été remplacée par le points d'interrogation dans la matrice M³?

Exercice 3

- 1. Etudier les variations de la fonction f définie sur \mathbb{R} par $f(x)=x^3-3x^2-9x+1$.
- 2. Montrer que l'équation f(x)=0 admet trois solutions.
- 3. Combien de solutions possède l'équation f(x)=6 ?
- 4. a) Pour quelles valeurs de α l'équation $f(x)=\alpha$ admet-elle des solutions ?
 - b) Combien de solutions possède l'équation $f(x)=\alpha$? Discuter selon la valeur de α .

Sujet de colle C (plus difficile)

Semaine 6

Question de cours :

Énoncer le théorème des valeurs intermédiaires.

Exercice 1

Un graphe complet est un graphe sans boucles ni arêtes doubles dont tous les sommets sont adjacents.

Lorsqu'il possède n sommets le note K_n.

- 1. a) Dessiner les graphes complets d'ordre 3.
 - b) Combien ce graphe a-t-il d'arètes?
 - c) Est-il connexe? Expliquer.
- 2. Dessiner les graphes K₄ et K₅ et répondre aux mêmes questions.
- 3. De façon générale, on considère le graphe complet d'ordre n est noté K_n.
 - a) Quel est le degré de chaque sommet ?
 - b) Combien le graphe K_n possède-t-il d'arêtes ?
- 4. <u>Application</u>: Dans une pièce se trouvent 12 personnes qui se serrent toutes la main. Expliquer quel graphe représente la situation, et en déduire le nombre de poignées de main échangées.

Exercice 2

On considère les fonctions définies sur $[0; +\infty[$ par $f(x)=\ln(1+x)-x$ et $g(x)=\ln(1+x)-x+\frac{x^2}{2}$.

- 1. Calculer les dérivées des fonctions f et g.
- 2. Dresser les tableaux de variations des fonctions f et g, en y précisant les valeurs des fonctions en 0.
- 3. En déduire l'encadrement $\forall x \in [0; +\infty[, x \frac{x^2}{2}] \le \ln(1+x) \le x$
- 4. En déduire un encadrement de $\frac{\ln(1+x)}{x}$, puis la limite de référence $\lim_{x\to 0^+} \left(\frac{\ln(1+x)}{x}\right)$.

Exercice 3

On considère un entier $n \ge 2$ et on pose, pour tout $x \in [0,1]$, $f_n(x) = x^n + 1 - nx$.

- 1. Montrer que la fonction f ainsi définie réalise une bijection de I = [0; 1] vers un intervalle à préciser.
- 2. a) Montrer que l'équation $x^n+1=nx$ possède une unique solution dans l'intervalle [0;1].

 On notera u_n cette solution, qui est donc définie par la relation $f_n(u_n)=0$.
 - b) Calculer u_2 .
- 3. a) Étudier le signe de $f_{n+1}(x) f_n(x)$ pour $x \in [0,1]$. En évaluant en $x = u_{n+1}$, déterminer le signe de $f_n(u_{n+1})$.
 - b) En déduire le sens de variation de la suite (u_n) .
- 4. Justifier que la suite (u_n) est convergente.
- 5. Montrer que pour tout entier n, on a $\frac{1}{n} \le u_n \le \frac{2}{n}$ et en déduire la limite de la suite (u_n) .

Sujet de colle Spécial Khalil

Semaine 6

Question de cours :

Énoncer le théorème d'Euler sur le lien entre les arêtes et les degrés des sommets d'un graphe.

Application : Expliquer pourquoi les sommets de degrés impairs sont forcément en nombre pair.

Exercice 1 Calculer
$$\lim_{x \to -1} \frac{1+x}{x^3+1}$$

Exercice 2

On considère le graphe simple dont les sommets sont les entiers naturels compris entre 1 et 20, et tel que deux sommets i et j sont reliés si et seulement si $i+j \le 21$. Demander un exemple au colleur si ce graphe n'est pas compris.

- 1. Le graphe est-il complet ? Justifier
- 2. Prouvez que ce graphe est connexe.
- 3. Ce graphe est-il Eulérien? Justifier.

Exercice 3

Soit f une fonction continue sur un segment [a,b]. On souhaite établir l'équivalence :

f est strictement monotone $\Leftrightarrow f$ est injective

- 1. Indiquer, en justifiant brièvement, l'implication évidente.
- 2. On suppose f injective et continue, et on se propose de montrer que f est strictement monotone.
 - a) Expliquer pourquoi $f(a) \neq f(b)$. Pour simplifier, on supposera que f(a) < f(b).

On suppose, par l'absurde, que f n'est pas strictement croissante.

- b) Justifier l'existence de deux nombres x et y tels que x < y et $f(y) f(x) \le 0$
- c) On considère la fonction définie sur [0;1] par $\varphi(x) = f(b+t(y-b)) f(a+t(x-a))$ Montrer qu'il existe $c \in [0;1]$ tel que f(c) = 0
- d) En déduire que (1-x) (b-a) = -c (y-x) et aboutir à une contradiction. Conclure.

Exercice 4

Soit M la matrice d'adjacence d'un graphe de 7 sommets qui représentent les bancs (noté B₁, B₂, ..., B₇) d'un parc.

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Les arêtes modélisent les allées permettant de passer de l'un a l'autre.

- 1. Est-il possible de parcourir toutes les allées de ce parc sans passer deux fois par la même allée à partir du banc B_1 sans revenir obligatoirement au banc B_1 ? Idem en revenant au banc B_1 .
- 2. Est-il possible de parcourir des allées de ce parc en passant devant de chaque banc exactement une fois et en revenant à notre banc de départ?
- 3. Avec un logiciel de calcul, on a calculé la matrice M^3 :
 - a) Expliquer pourquoi le graphe est connexe.
 - b) Combien de chaînes de longueur 3 existe-t-il entre les sommets B_4 et B_5 ?
 - c) Quels sommets peut-on quitter pour y revenir par une chaîne de longueur 3 ?
- --> M^3
 ans =

 0. 5. 2. 2. 1. 2. 4.
 5. 2. 2. 2. 8. 4. 1.
 2. 2. 2. 3. 6. 2. 1.
 2. 2. 3. 2. 6. 2. 1.
 1. 8. 6. 6. 4. 6. 7.