Feuille d'exercices 5 : Séries numériques, rappels et compléments

Exercice 1. Nature de séries numériques.

Étudier la nature des séries suivantes. Calculer la somme si possible.

1.
$$\sum_{n\geq 0} e^{-2n}$$

6.
$$\sum_{n>0} \frac{(n-2)3^n}{n!}$$

$$2. \sum_{n\geq 1} \ln\left(1+\frac{1}{n}\right)$$

7.
$$\sum_{n\geq 0} \frac{n}{2^{2n-1}}$$

3.
$$\sum_{n\geq 0} \frac{n(n-1)}{6^n}$$

8.
$$\sum_{n\geq 0} (n+1) \left(-\frac{1}{4}\right)^{n+1}$$

4.
$$\sum_{n\geq 0} \frac{(-1)^n}{3^{n-2}}$$

9.
$$\sum_{n\geq 0} \frac{n^2+n+1}{n!}$$

5.
$$\sum_{n\geq 2} (n-1) \left(-\frac{1}{2}\right)^{n+1}$$

10.
$$\sum_{k>1} \frac{k(k+1)x^k}{k!} \text{ où } x \in \mathbb{R}.$$

Exercice 2. Séries d'après EMLyon 2009 et 2010.

On considère deux réels strictement positifs p et q tels que p+q=1. Justifier la convergence des séries suivantes, et calculer leurs sommes.

1.
$$\sum_{k\geq 2} (pq^{k-1} + qp^{k-1})$$
 2. $\sum_{k\geq 1} (pq^{k-1})^2$

2.
$$\sum_{k>1} (pq^{k-1})^2$$

$$3. \sum_{k \ge 1} k \frac{2pq^k}{1+q}$$

Exercice 3. Calcul d'une série à l'aide d'une base de polynômes. On considère la série de terme général

$$u_n = \frac{n^3 + 2n^2 - 4n + 1}{n!}$$

- 1. Montrer que la famille (1, X, X(X-1), X(X-1)(X-2)) est une base de $\mathbb{R}_3[X]$.
- 2. En déduire qu'il existe quatre réels a, b, c et d tel que

$$\forall n \in \mathbb{N}, n^3 + 2n^2 - 4n + 1 = a + bn + cn(n-1) + dn(n-1)(n-2)$$

3. En déduire que la série $\sum_{n\geq 0} u_n$ converge et calculer sa somme.

Exercice 4. Décomposition du terme général d'une série.

1. Trouver trois réels a, b et c tel que

$$\forall n \in \mathbb{N}^*, \frac{1}{n(n+1)(n+3)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+3}$$

2. En déduire la valeur de $\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+3)}$.

3. En déduire la nature et la somme de la série $\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+3)}$.

4. De façon analogue, étudier la série $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n^2-1)}$.

Exercice 5. Étude de séries par critères de comparaison.

Étudier la nature des séries suivantes. On ne demande pas de calculer la somme.

1.
$$\sum_{k>1} \frac{1}{k\sqrt{k}}$$

1.
$$\sum_{k \geq 1} \frac{1}{k\sqrt{k}}$$
 5. $\sum_{k \geq 2} \frac{1}{\sqrt{k} ln(k)}$

9.
$$\sum_{k\geq 0} \sqrt{k^3+1} - \sqrt{k^3}$$

2.
$$\sum_{k\geq 1} \frac{k^3 - k + 1}{5k^5 + 3k^4 + 2k}$$
 6. $\sum_{k\geq 2} \frac{5}{4^k \ln(k)}$ 10. $\sum_{k\geq 0} e^{n^2}$

6.
$$\sum_{k\geq 2} \frac{5}{4^k \ln(k)}$$

10.
$$\sum_{k\geq 0} e^{i}$$

3.
$$\sum_{k>0} \frac{k^3 - k^2 + 1}{e^k + 3k^4 + 2k}$$

7.
$$\sum_{k>0} \frac{1}{e^k - e^{-k}}$$

3.
$$\sum_{k>0} \frac{k^3 - k^2 + 1}{e^k + 3k^4 + 2k}$$
 7. $\sum_{k\geq 0} \frac{1}{e^k - e^{-k}}$ 11. $\sum_{n>0} \ln\left(1 - \frac{1}{\sqrt{n^3 + 1}}\right)$

4.
$$\sum_{k>1} \ln \left(1 + \frac{1}{k^2}\right)$$

8.
$$\sum_{k>1} \frac{1}{\sqrt{k(k+1)}}$$

12.
$$\sum_{k\geq 1} k^{\frac{1}{k}} - 1$$

Exercice 6. Série associée à une suite récurrente.

On considère la suite (u_n) définie par $u_0 = a > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n e^{-u_n}$.

- 1. Montrer que pour tout entier naturel n on a $u_n > 0$.
- 2. Étudier le sens de variation et la convergence de la suite (u_n)
- 3. On pose, pour tout entier naturel $n, v_n = ln(u_n)$. Montrer que pour tout entier n, $\sum u_k = v_0 - v_{n+1}.$
- 4. En déduire la nature de la série $\sum_{k>0} u_k$.

Feuille d'exercices 5 : Séries numériques, rappels et compléments

Exercice 7. Série associée à une suite récurrente.

On considère la suite (u_n) définie par $u_0 = a \in]0;1[$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$.

- 1. Montrer que la suite (u_n) converge vers 0.
- 2. Montrer que la série $\sum_{n\geq 0}u_n^2$ converge et calculer sa somme.
- 3. Montrer que la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$ est divergente.
- 4. Quelle est la nature de la série $\sum_{n\geq 0} u_n$?

Exercice 8. Équivalent et série associée à une suite implicite.

Pour tout entier naturel n, on considère la fonction $f_n: x \mapsto x^2 + nx - 1$.

- 1. Montrer que pour tout entier n, l'équation $f_n(x) = 0$ possède une unique solution dans \mathbb{R}^+ que l'on notera u_n .
- 2. Montrer que $\forall n \in \mathbb{N}, 0 \leq u_n \leq 1$.
- 3. En déduire que la suite (u_n) est convergente, et déterminer sa limite.
- 4. Montrer que $\lim_{n\to\infty} nu_n = 1$.
- 5. En déduire la nature de la série $\sum_{n>0} u_n$.

Exercice 9. D'après EMLyon 2015.

On considère l'application réelle $f: x \mapsto x^3 e^x$.

- 1. Montrer que la série $\sum_{n\geq 1} \frac{1}{f(n)}$ converge. On note $S=\sum_{n=1}^{\infty} \frac{1}{f(n)}$ sa somme.
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \left| S - \sum_{k=1}^n \frac{1}{f(n)} \right| \le \frac{1}{(e-1)e^n}$$

3. En déduire un programme Python qui calcule une valeur approchée de S à 10^{-4} près.

Exercice 10. D'après EDHEC 2012.

On admet que, si une suite $(a_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ , alors on a : $\lim_{n\to+\infty}\frac{1}{n}\sum_{i=0}^{n-1}a_i=\ell$.

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par la donnée de $u_0=0$ et par la relation, valable pour tout entier naturel n, $u_{n+1}=\frac{u_n^2+1}{2}$.

- 1. (a) Montrer que, pour tout entier naturel n on a , $0 \le u_n < 1$.
 - (b) Étudier les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Déduire des questions précédentes que la suite $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 2. Pour tout entier naturel n on pose, $v_n = 1 u_n$.
 - (a) Montrer que $\lim_{n\to+\infty} \left(\frac{1}{v_{n+1}} \frac{1}{v_n} \right) = \frac{1}{2}$.
 - (b) Utiliser le résultat admis en début d'exercice pour trouver un équivalent de v_n lorsque n tend vers $+\infty$.
 - (c) En déduire que $u_n = 1 \frac{2}{n} + \frac{1}{n}\varepsilon(n)$ avec $\lim_{n \to +\infty} \varepsilon(n) = 0$.
- 3. (a) Écrire un programme Python qui demande un nombre n en entrée et qui renvoie la valeur de u_n .
 - (b) En déduire un programme, rédigé en Python, qui permet de déterminer et d'afficher la plus petite valeur de n pour laquelle on a $1 u_n < 10^{-3}$.

Exercice 11. Une suite implicite tombée en colle....

On pose

$$f_n(x) = x^n + 1 - nx$$

- 1. Montrer que pour tout entier $n \geq 2$, l'équation $x^n + 1 = nx$ possède une unique solution dans l'intervalle [0,1]. On notera x_n cette solution.
- 2. Justifier que $\frac{1}{n} \le x_n \le \frac{2}{n}$. En déduire la limite de la suite (x_n) .
- 3. En utilisant l'égalité $f_n(x_n) = 0$ déterminer la limite de (nx_n) .
- 4. Étudier le signe de $f_{n+1}(x)-f_n(x)$. En évaluant en $x=x_{n+1}$, en déduire le signe de $f_n(x_{n+1})$.
- 5. Déterminer le sens de variation de la suite (x_n) .
- 6. Quelle est la nature de la série $\sum x_n$?